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Abstract: Accurate prediction of the binding affinities of small-molecule ligands to their biological targets
is fundamental for structure-based drug design but remains a very challenging task. In this paper, we have
performed computational studies to predict the binding models of 31 small-molecule Smac (the second
mitochondria-derived activator of caspase) mimetics to their target, the XIAP (X-linked inhibitor of apoptosis)
protein, and their binding affinities. Our results showed that computational docking was able to reliably
predict the binding models, as confirmed by experimentally determined crystal structures of some Smac
mimetics complexed with XIAP. However, all the computational methods we have tested, including an
empirical scoring function, two knowledge-based scoring functions, and MM-GBSA (molecular mechanics
and generalized Born surface area), yield poor to modest prediction for binding affinities. The linear
correlation coefficient (r 2) value between the predicted affinities and the experimentally determined affinities
was found to be between 0.21 and 0.36. Inclusion of ensemble protein-ligand conformations obtained
from molecular dynamic simulations did not significantly improve the prediction. However, major improvement
was achieved when the free-energy change for ligands between their free- and bound-states, or “ligand-
reorganization free energy”, was included in the MM-GBSA calculation, and the r 2 value increased from
0.36 to 0.66. The prediction was validated using 10 additional Smac mimetics designed and evaluated by
an independent group. This study demonstrates that ligand reorganization free energy plays an important
role in the overall binding free energy between Smac mimetics and XIAP. This term should be evaluated
for other ligand-protein systems and included in the development of new scoring functions. To our best
knowledge, this is the first computational study to demonstrate the importance of ligand reorganization
free energy for the prediction of protein-ligand binding free energy.

Introduction

Accurate prediction of the binding affinities of small-molecule
ligands to their biological targets is fundamental to structure-
based drug design but remains a very challenging task. Over
the years, a number of scoring functions have been developed.1

Although these scoring functions can yield good predictions for
the binding affinities of small-molecule ligands to their protein
targets in some cases, they typically give poor to modest
prediction when applied to a large number of proteins from
different families and ligands with diverse chemical structures.2,3

This is especially troubling even when experimentally deter-
mined high-resolution crystal structures of the protein-ligand
complexes are used as the starting points for binding-affinity
prediction. For example, our previous evaluations of 11 scoring
functions showed that the best scoring functions were only able

to yield an r 2 value of 0.4 for 100 protein-ligand complexes,
even when the experimentally determined crystal structures were
used.4 More recently, we have developed a new knowledge-
based scoring function, named M-Score, based upon 2331 high-
resolution protein-ligand crystal structures.5 Evaluation of
M-Score against 896 structurally diverse protein-ligand com-
plexes not included in the training set yielded an overall
correlation of r 2 ) 0.24 between the experimentally determined
binding affinities and the calculated scores.5 Further analysis
of M-Score with 17 protein families having more than 10
protein-ligand complex crystal structures for each protein
showed that while we were able to achieve good to excellent
correlation between the predicted scores and experimentally
determined binding affinities with r 2 values between 0.42 and
0.85 for six protein families, we obtained poor to modest
correlation for nine protein families and anticorrelation for two
protein families.5 In general, our inability to accurately predict
the binding affinities of small-molecule ligands to their biologi-
cal targets is a major impediment to the success of many
structure-based drug design projects. There is therefore a clear
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need to achieve a much better understanding of the factors that
contribute to protein-ligand binding and to include them in
the prediction of protein-ligand binding affinities.6

In this study, we have evaluated X-Score,7 Drugscore,8

M-Score,5 and MM-GBSA (molecular mechanics and general-
ized Born surface area)9 for their ability to predict the binding
affinities of 31 small-molecule Smac (second mitochondria-
derived activator of caspase) mimetics to XIAP (X-linked
inhibitor of apoptosis). The 31 inhibitors include both peptides
and peptidomimetics and have binding affinities (Ki) to XIAP
ranging from 4 nM to 68 µM. We have found that all these
four computational methods yield poor to modest prediction for
binding affinities when using a single protein-ligand complex
structure. The linear correlation coefficient (r 2) value between
the experimentally determined affinities and the predicted values
was found to be between 0.21 and 0.36. Inclusion of an
ensemble of protein-ligand conformations obtained from mo-
lecular dynamic (MD) simulation failed to improve the predic-
tion significantly for three of the scoring functions. However,
when the reorganization free energy for ligands was included
in the MM-GBSA calculation, the r 2 value increased from 0.36
to 0.66. The prediction was further validated using additional
Smac mimetics from other laboratories (see Figure 1).10,11

To our best knowledge, this is the first computational study
to demonstrate the importance of ligand reorganization free
energy for the prediction of protein-ligand binding free energy.
Our present study clearly demonstrates that the reorganization
free energy for ligands can make a significant contribution to

the overall binding free energy between small-molecule ligands
and their biological targets. Accordingly, this term should be
included in the development of new computational methods for
binding-affinity prediction of protein-ligand interaction.

Methods and Calculations

The XIAP protein consists of three baculoviral IAP repeat (BIR)
domains. It is known that Smac-based peptides bind to both BIR2
and BIR3 domains but have much higher affinities to the BIR3
domain.12 Accordingly, our current study has focused on the
interaction between XIAP BIR3 domain and Smac mimetics. The
XIAP BIR3 protein used in our simulations consists of 102 residues
(L256-E357) with the sequence:

LPRNPSMADYEARIFTFGTWIYSVNKEQLARAGFYALGEG-
DKVKCFHCGGGLTDWKPSEDPWEQHAKWYPGCKYLLEQKG-
QEYINNIHLTHSLEECLVRTTE

The structure of the complex formed by XIAP-BIR3 and Smac
protein was determined previously,13 and the coordinates were
obtained from the Protein Data Bank14 (PDB entry: 1G73). Based
upon the crystal structure, the first four residues (AVPI) in Smac
mediate the interaction between Smac and XIAP BIR3. Thus, only
a monomer unit (chain D) of XIAP and the first four residues
(AVPI, chain A) of the Smac protein from the X-ray structure were
used in the current study (see Figure 2).
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Figure 1. Smac AVPI peptide and the general modification strategy for the design of small-molecule Smac mimetics. Compounds 22 and 23 were designed
in our laboratory, whereas compounds 32 and 36 were designed and evaluated by scientists at Genentech.
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Models of all compounds were prepared and minimized with
the Sybyl15 program. Docking simulations were performed using
the GOLD 3.2 program16 to predict their binding models. The center
of the binding site was set at T308 of XIAP BIR3 and its radius
was defined as 13 Å, large enough to cover all the residues in the
binding site. For each genetic algorithm (GA) run, a maximum
number of 200,000 operations were performed on a population of
5 islands of 100 individuals. Operator weights for crossover,
mutation and migration were set to 95, 95, and 10 respectively.
The docking was terminated after 20 runs for each ligand.
GoldScore, implemented in Gold 3.2, was used as the fitness
function to evaluate the docked conformations. The 20 highest
ranked conformations by each fitness function were saved for
analysis. Since all the small-molecule inhibitors in our current study
were designed to mimic the Smac AVPI peptide in its binding to
XIAP BIR3, we used the following two criteria for the selection
of the initial binding pose for each compound for subsequent MD
simulations: (1) it should be a high-ranked pose; and (2) the
backbone atoms of the Smac mimetic should closely mimic the
corresponding atoms of the Smac AVPI peptide in the crystal
structure.

Amber (version 8)17 was used for the MD simulations. The
Amber 99 force field parameters18 were used for the amino acids.
Some parameters not found in the standard amino acid library are
also required to perform the simulations. First, in XIAP-BIR3, a
zinc ion is covalently bonded with His320, Cys300, Cys303, and
Cys327 in a tetrahedral structure. Because the zinc ion only has a
structural role and does not have direct interactions with the ligands,
we used the force field parameters derived by Ryde19 and
constrained the four residues in the zinc-coordinated center with
modest harmonic forces (1 kcal/mol ·Å2). Second, we used the
Antechamber module in Amber to derive the force field parameters
for all the compounds. The protocol for generating the point charge
parameters is as follows: The docked pose of each compound was
minimized at the RHF level using a 6-31G** basis set with
Gaussian98.20 The electrostatic field potential calculated from
Gaussian98 was used to generate the point charges at each atom
site based on the RESP fitting procedure.

To prepare the topology and coordinate files, counterions were
added to neutralize the charges in the complex before it was placed
in a 10 Å cubic box of water. The TIP3P21 water model was used.
After a 500-step minimization, a 0.5 ps simulation was performed
to raise the temperature of the system to 150 K, followed by another
1 ps of simulation to increase the temperature further to 298 K.
The system was then equilibrated for 8.5 ps at 298 K. The
production run was 1 ns. Conformations were saved from the
trajectory at intervals of 0.4 ps. Conformations collected from 0.2
to 1 ns were used for the binding affinity prediction calculations.
All the MD simulations were in the isothermal isobaric (NTP, T )
298 K and P ) 1 atm) ensemble. The SHAKE22 algorithm was
used to fix bonds involving hydrogen. The PME method23 was used,
and the nonbonded cutoff distance was set at 10 Å. The time step
was 2 fs, and the neighboring pairs list was updated in every 20
steps.

The unbound ligand conformation simulations were performed
with the Generalized Born (GB) model.24 The force field parameters
of the ligand were the same as those used in the protein-ligand
complex simulation. When preparing the topology file, PBradii was
set to mbondi2 and igb to 5. During simulations, the nonbonded
cutoff distance was set to 999 Å, which was equivalent to no cutoff.
Langevin dynamics was turned on with the collision frequency set
to 5 ps-1. The temperature of the simulation was set to 300 K. A
time step of 1 fs was used in the simulation, and the total length of
simulation was 10 ns. Forty-nine conformations of each ligand from
the 10 ns simulation were used for the free energy calculations.
Convergence of the results was checked by using twice as many
conformations from the same 10 ns simulations.

We evaluated three scoring functions (X-Score,7 Drugscore,8 and
M-Score5) and the MM-GBSA9 method for binding affinity
prediction. The ensemble average binding affinity predictions using
X-Score, Drugscore, and M-Score were calculated as follows: A
snapshot of each single protein-ligand complex conformation from
the trajectory was used to calculate a single score. It should be
noted that the conformations of both the protein and the ligand are
different in different snapshots. For every compound, 41 conforma-
tions, taken at intervals of 20 ps in the MD simulation (0.2 to 1
ns), were used to compute the average score and standard deviation
to represent the binding affinity of each ligand. In the MM-GBSA
calculation, the same 41 conformations corresponding to 20 ps
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Figure 2. (A) Structure of the XIAP BIR3-AVPI complex and alignment
of the nine ligand-bound XIAP BIR3 crystal structures. Residues around
the binding site (L292-Y324) are shown as line structures. The AVPI peptide
is colored in green. Residues of XIAP BIR3 which directly interact with
AVPI are labeled. (B) Per residue positional variation of XIAP BIR3
calculated from the alignment of nine structures. Black points correspond
to backbone atoms, red points to side-chain atoms.
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intervals in the trajectory were used for the molecular mechanics
calculations. Nine conformations (taken at intervals of 100 ps) from
the 1 ns trajectory were chosen for the normal mode calculations
for entropic contribution to the binding free energy. In the normal
mode calculations, a distance-dependent dielectric constant ε ) 4r
was used, the maximum cycle was set to 60,000, and the
convergence tolerance was 0.0002 kcal mol-1Å-1.

In general, the ligand reorganization free energy is defined as
the free energy difference of the ligand with conformations at two
different states, namely protein-bound and protein-free states. This
quantity can be calculated using appropriate theories with consistent
force field parameters. In this work, because we used the MM-
GBSA model to estimate the relative binding free energy of the
ligands and the protein, we used the same level of theory and force
field parameters (i.e., MM-GBSA) to estimate the ligand reorga-
nization free energy. Detailed theoretical models and calculations
are as follows.

On the basis of the two-state end point approach in the MM-
GBSA model,25,26 the absolute binding free energy between protein
and ligand is defined and can be calculated as:

where Gcomplex(x), Gprotein(unbound) and Gligand(unbound) stand for the free
energy of the protein-ligand complex, of the unbound protein and
of the unbound ligand in solution. We will use (x) and (unbound)
to denote conformations in the protein-ligand complex and the
unbound states respectively. Individual terms of the free energy
according to the MM-GBSA model are calculated as, Gsolute ) EMM

+ Gsolv - TS, where EMM is the molecular mechanics energy, Gsolv

is the solvation free energy and S is the entropy for the solute. A
direct computation of the binding free energy using eq 1 will give
the absolute binding free energy between the protein and its ligand.
However, convergence of the absolute binding free energy typically
requires a lengthy simulation. When the relative binding free
energies of a series of compounds are needed, the one-state end
point MM-GBSA model is frequently used in which case only a
single trajectory of the protein-ligand complex simulation is
needed. The connection between the two-state and one-state end
point MM-GBSA models can be obtained by rearranging eq 1 as:

where δGprotein,re and δGligand,re are the protein and ligand reorganiza-
tion free energy, respectively. When calculating the binding free
energy of a series of compounds, the two-state end point model
accounts for the differences of the structural changes in the protein
and the ligand upon binding whereas the one-state end point model
assumes that both δGprotein,re and δGligand,re contribute similarly to
the binding free energy. In this work, we assume δGprotein,re is the
same for the series of compounds but explicitly included the
δGligand,re term for each compound.

To calculate δGligand,re, we need to compute Gligand(x) and
Gligand(unbound). Gligand(x) is the free energy of the ligand at the protein-
bound state and was calculated directly from the MM-GBSA
module in the Amber program suite using the simulated trajectories
of the protein-ligand complex system. To be consistent with the
force field parameters, Gligand(unbound) was calculated from the same
MM-GBSA module using the simulated trajectories of the unbound
ligand in the GB implicit solvent model. The choice of using the

GB implicit solvent model to sample the unbound ligand conforma-
tions as opposed to the explicit solvent model results from
considering the computational efficiency and consistency in force
field parameters when calculating the free energy of the ligand. To
extract Gligand(unbound) in the MM-GBSA module, snapshots of the
ligand conformations from the unbound ligand simulations were
used and the ligand was treated as a “receptor”. For both Gligand(x)

and Gligand(unbound), enthalpic and entropic terms in the free energy
were included as has been shown in the equation previously.
Throughout the text, we have abbreviated ∆Gbind

one-state and δGligand,re

as ∆G and δ∆Gre.

Results and Discussion

Analysis of the Smac Binding Site in XIAP BIR3. The crystal
structure of the XIAP BIR3 domain protein complexed with
Smac protein,13 and the NMR solution structure of XIAP BIR3
bound to a Smac-based peptide,12 reveal the detailed interactions
between Smac and XIAP BIR3 and have provided a structural
basis for the design of small-molecule Smac mimetics as
inhibitors of XIAP.

The interactions between Smac and XIAP BIR3 are mediated
by the Ala1-Val2-Pro3-Ile4 (A1-V2-P3-I4) four-residue binding
motif in Smac and a well-defined groove on the surface of XIAP
BIR3 protein.13 The methyl group of the Ala1 residue inserts
into a small hydrophobic pocket, the free amino group forms
strong hydrogen bonds to the Glu314 and Gln319 residues on
the protein, and the backbone carbonyl group forms a suboptimal
hydrogen bond to the indole NH group of Trp323. The amino
and carbonyl groups of Val2 form optimal hydrogen bonds with
the carbonyl and amino groups of Thr308, respectively, while
the Val2 side chain is exposed to solvent and has no interaction
with protein residues. The 5-membered ring of Pro3 has van
der Waals contacts with the side chains of Trp323 and Tyr324
and finally, the amino group of the Ile4 residue forms a hydrogen
bond with the carbonyl group of Gly306, and its hydrophobic
side chain inserts into the hydrophobic pocket formed by the
side chains of Leu292 and Val298 and the hydrophobic portion
of the side chains in Lys297 and Lys299.

In addition to these two initial structures, seven crystal
structures of small-molecule Smac peptidomimetics and non-
peptidic mimetics complexed with XIAP BIR3 protein have
been reported, and their coordinates are available in the Protein
Data Bank (Supporting Information, Table S1). The availability
of these experimental structures afforded us the opportunity to
examine if these Smac mimetics have similar interactions with
XIAP BIR3 and if ligand binding induces significant confor-
mational change.

Superimposition of the nine available structures of XIAP
BIR3 complexed with Smac protein, Smac peptide or small-
molecule Smac mimetics showed that positional variation of
the backbone atoms around the binding site (residues 292 to
324) in XIAP is minimal, with a root-mean-standard-deviation
(rmsd) between 0.20 Å and 0.75 Å. Positional variations of the
side chain of residues directly interacting with ligands (L292,
K297, K299, L307, W310, E314, Q319, W323, and Y324) are
also small and the rmsd value for non-hydrogen side chain atoms
is between 0.28 Å (W310) and 0.73 Å (K297). Thus, the very
similar conformations for the XIAP binding-site when bound
to different ligands in these crystal structures suggest that the
binding site may have limited conformational flexibility.

A possibility that the XIAP binding-site adopts similar
conformations in the crystal structures is that all these small-
molecule Smac mimetics were designed based upon the Smac
AVPI peptide, and thus have very similar interactions with

(25) Hiroaki Gouda, I. D. K.; Case, D. A.; Kollman, P. A. Biopolymers
2003, 68, 16–34.

(26) Lee, M. S.; Olson, M. A. Biophys. J. 2006, 90, 864–877.

∆Gbind
two-state ) Gcomplex(x) - [Gprotein(unbound) + Gligand(unbound)]

(1)

∆Gbind
two-state ) Gcomplex(x) - [Gprotein(x) + Gligand(x)] +

{[Gprotein(x) - Gprotein(unbound)] + [Gligand(x) -
Gligand(unbound)]}
) ∆Gbind

one-state + δGprotein,re + δGligand,re (2)
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XIAP. To further assess the conformational flexibility of the
XIAP binding site, we removed the peptide from the crystal
structure of XIAP BIR3 complexed with the AVPI peptide and
performed a lengthy (9 ns) MD simulation on the ligand-free
XIAP BIR3 structure in the presence of explicit water molecules.
This MD simulation showed that in the first 5.4 ns, the backbone
atoms of the binding site (R285-P325) deviate very little from
the ligand-bound conformation, with an rmsd around 0.8 Å for
all non-hydrogen atoms (Supporting Information, Figure S1).
After 5.4 ns, an increase in the rmsd of the backbone atoms to
around 1.2 Å was observed. This increase in the backbone rmsd
was found to be primarily attributable to the motion of the loop
between K311 and D315. Since the hydrophobic side chain of
W323 is exposed to solvent and is involved in interactions with
the ligands, we expected that this residue might undergo a major
conformational change to refold its hydrophobic side chain onto
the binding site in the absence of the ligand. It was found,
however, that throughout the entire 9 ns simulation, W323
remained in its open conformation.

Taken together, the MD simulations and the experimental
structures of XIAP BIR3 complexed with different ligands
indicate that XIAP BIR3 has a well-defined binding site with
limited flexibility.

Computational Prediction of the Binding Models of Smac
Mimetics to XIAP BIR3. Binding models of these Smac
mimetics, including both peptidomimetics and nonpeptidic
mimetics, to XIAP BIR3 were predicted using the GOLD
program, starting from the high-resolution crystal structure of
XIAP BIR3 complexed with Smac.13 The chemical structures
of these Smac-based ligands and their binding affinities to XIAP
BIR3 are provided in Table 1.

Analysis of the predicted binding models for these compounds
showed that they all have very similar interactions with XIAP
BIR3. The key charge-charge interactions, hydrogen bonding,
and hydrophobic contacts observed between the Smac AVPI
peptide and XIAP BIR3 were essentially maintained in the
predicted binding models for each of these compounds.

Since the binding model for compound 23 (SM-130) was
predicted prior to the determination of its crystal structure in
complex with XIAP BIR3, it provided an opportunity to directly
validate the predicted binding model for this compound (Figure
3B). Our analysis showed that the peptidic backbone conforma-
tion of compound 23 is the same in the predicted model and
the crystal structure. The small binding cavity, in which Ala1
in Smac docks, has adequate room for the additional carbon
atom of the ethyl group in compound 23. This ethyl group adopts
two slightly different orientations in the model and in the crystal
structure. The model also shows a more energetically favorable
conformation for the peptide bond connecting the lactam and
the biphenyl group as opposed to the distorted conformation in
the crystal structure. Finally, the biphenyl group in compound
23 assumes the same orientation in the model and in the crystal
structure.

The predicted binding model for 22 from our group and that
for 32 reported by scientists from Genentech are shown in Figure
3C,D. The crystal structure of compound 32 in the complex
with an XIAP-ML-IAP BIR3 chimera has been reported (PDB
ID: 2I3I), and closely mimics the predicted binding pose for
this compound complexed with XIAP. The bicyclic core of
compound 32 in the docked pose has less contact with the
protein surface than that in the chimera crystal structure, which

may be attributed to the fact that Phe324 in the chimera protein
is replaced with a slightly bulkier and polar Tyr324 in XIAP
BIR3.

Assessment of the Binding Affinities of Smac Mimetics to
XIAP Using a Single Binding Model. On the basis of the
predicted binding models for Smac ligands, we have calculated
their relative binding affinities using three different scoring
functions, X-Score, Drugscore, and M-Score, and correlated the
calculated values with their experimentally determined Ki values
binding to XIAP BIR3. We included compounds 1-31 in the
correlation analysis since their binding affinities to XIAP BIR3
were determined under the same assay conditions.

As seen in Figure 4, the r 2 between the calculated relative
binding affinities or scores and experimentally determined Ki

values are 0.16 by X-Score, 0.25 by Drugscore, and 0.30 by
M-Score. Hence, all three of these scoring functions yield poor
to modest accuracy in their prediction of the relative binding
affinities for these 31 Smac ligands.

Prediction of the Binding Affinities of Smac Mimetics to
XIAP Using an Ensemble of Binding Models. Although it has
been a common practice to use a single predicted binding model
for each compound to assess the relative binding-affinities
between a set of compounds, this practice has its inherent
limitations. For example, although the highest ranked binding
pose based upon the scoring function in the GOLD program
was selected as the predicted binding model for each ligand,
there were a number of top ranked binding poses which were
similar but not identical to the highest ranked binding pose.
Furthermore, although our MD simulation of the XIAP BIR3
protein suggested that its binding site has limited flexibility, a
number of polar/charged side chains of key binding residues
exhibited significant conformational changes during the 9 ns
simulation. Therefore, we tested whether inclusion of an
ensemble of binding poses for each compound can improve the
prediction of the relative binding affinities of Smac ligands to
XIAP over the use of a single binding pose for each compound.

To generate an ensemble of conformations, MD simulation
was performed for each protein-ligand complex in the presence
of explicit water molecules starting from the predicted binding
pose. The ensemble of conformations was then used to calculate
an average score by X-Score, Drugscore, and M-Score for each
protein-ligand complex. A correlation analysis between the
averaged scores and the experimentally determined Ki values
is shown in Figure 5. As can be seen, using the average scores
generated from an ensemble of conformations for protein-ligand
complexes generally improved the correlation between the
predicted scores and the experimental Ki values for all three
scoring functions. However, the overall correlation obtained for
each of the scoring functions is still modest. The largest
improvement was observed for Drugscore, in which the r2 value
improves from 0.25 to 0.36.

Prediction of the Binding Affinities Using the MM-GBSA
Method. Since use of an ensemble of conformations still only
yielded modest accuracy by Drugscore, M-Score, and X-Score
in the prediction of the relative binding affinities for these Smac
ligands, we next evaluated the MM-GBSA method. In the
context of using an ensemble of conformations for binding
affinity assessment, the MM-GBSA method provides several
advantages. First, the same force field parameters are used for
simulation and postprocessing for calculating binding affinity.
Second, individual free-energy components can be analyzed.
Third, other parameters related to the overall binding free
energy, such as conformational free-energy changes for a protein
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Table 1. Chemical Structures of Smac Mimetics and Their Binding Affinities to XIAP BIR3 Studied in This Work
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and ligand that cannot be obtained from the protein-ligand
complex structure alone, can be considered on the same
theoretical basis.

We first performed energetic decomposition and correlated
each term with the experimental Ki values. It was found that

the most significant correlation is between the van der Waals
interaction of ligands with protein and the experimentally
determined Ki values, yielding an r 2 value of 0.29. This
correlation is similar to those obtained by Drugscore, M-Score,
and X-Score. Including all other terms in the MM-GBSA

Table 1. Continued

Figure 3. (A) Crystal structure of XIAP-BIR3 and the AVPI peptide (PDB entry: 1G73) in green. XIAP-BIR3 residues interacting with the AVPI peptide
are labeled in black. (B) Binding model of compound 23 and XIAP-BIR3 superimposed with the crystal structure (rmsd)0.81 Å). (C) Binding model of
XIAP-BIR3 with compound 22 and (D) with compound 32. The AVPI peptide is superimposed with compounds 22 in (C). The crystal structure of compound
32 is with XIAP-ML-IAP chimera protein.
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method (Table S3, Supporting Information), the r 2 value
increases from 0.29 to 0.36 [Figure 6B]. Hence, our MM-GBSA
analysis showed that the dominant contribution to the binding
affinity difference of these 31 compounds with XIAP BIR3 is
from the van der Waals interaction, but the correlation is still
modest.

Inclusion of Ligand Reorganization Free Energy in the
MM-GBSA Calculation. In our design of Smac mimetics, we
have applied the classical conformational constraining strategy
on the Smac peptide to improve their binding affinities to XIAP
by reducing the entropic cost. Therefore, we next investigated
whether inclusion of ligand reorganization free energy, the free-
energy change between protein-free and protein-bound states

for the ligands, can significantly improve the correlation in the
MM-GBSA calculation. Since the binding site of XIAP BIR3
adopted a very similar conformation when bound to different
ligands in the crystal structures, we made an assumption on the
basis of our computational studies that the XIAP protein has a
similar conformational free-energy change upon binding to
different ligands and focused our investigation on the ligand
conformational free energy.

We generated ligand ensemble conformations in the protein-
bound and protein-free states through MD simulations, which
were necessary to calculate the ligand reorganization free energy

Figure 4. Correlation between the experimental Ki values and the binding
affinities for 31 compounds, calculated by three scoring functions. (A)
X-Score, (B) Drugscore, (C) M-Score. A single docked pose of each
compound was selected from the docking simulation using GOLD v3.2.

Figure 5. Correlation between the experimental Ki values and the binding
affinities for 31 compounds, calculated by three scoring functions. (A)
X-Score, (B) Drugscore, (C) M-Score. Forty-one snapshots taken from a 1
ns simulation between XIAP-BIR3 and compounds were used to calculate
the ensemble average scores. Standard deviations of the scores for each
compound calculated from the ensemble structures are shown with bars.
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change. Because ligands bound to the protein occupy a restricted
conformational space, a relatively short simulation (1 ns) was
performed to sample the ligand conformations bound to the
protein. Ligands in the protein-free state (i.e. in solution) are
much less restricted by the environment, and much longer
simulation is needed to adequately sample their conformational
space. Accordingly, we performed a 10 ns simulation for each
ligand using the generalized Born (GB) implicit solvent model.
Conformations of the ligand from both simulations were used
to calculate the free energies of the ligand in the respective
states, and the difference between them is the ligand reorganiza-
tion free energy.

This calculated ligand reorganization free energy was then
included in the correlation analysis, together with other terms

calculated using the MM-GBSA method, and the results are
shown in Figure 6C. As can be seen, inclusion of the ligand
reorganization free-energy change significantly improves the
correlation between the calculated binding free energies and
experimental Ki values for these 31 Smac ligands. The r 2 value
was increased from 0.36 to 0.66, and the standard deviation
(SD) was improved by 1.0 kcal/mol, from 2.6 to 1.6 kcal/mol.

Analysis of the ligand reorganization free energy showed that
between different ligands, there is a quite large variation in this
term. The most positive contributions (most negative values for
δ∆Gre) are -1.85 and -0.92 kcal/mol for compounds 9 and
26, respectively. The most negative contributions (most positive
values for δ∆Gre) are 7.85, 7.29, and 5.24 kcal/mol for
compounds 29, 28, and 23, respectively. The most potent
compounds 26, 27 and 25 have a relatively small penalty in
their ligand reorganization free energy; an exception is found
in compound 22.

We decomposed the ligand reorganization free energy into
the enthalpic and entropic terms. One major surprise to us was
that there is a positive entropic contribution (negative value for
-δ∆T∆S) for most compounds but a negative enthalpic
contribution for all the compounds except 9, 21, and 13. Most
of the compounds gain some entropy (up to 1.62 kcal/mol) but
lose more enthalpy (up to 8.44 kcal/mol) when they transition
from the protein-free to protein-bound state (Figure 7B). On
average, enthalpic loss dominates entropic gain by a factor of
6, and while the reorganization enthalpic loss can change the
total ∆H by about 25%, the entropic gain resulting from

Figure 6. Correlation for 31 compounds between the experimental Ki values
and (A) van der Waals interaction, (B) binding free energy, (C) binding
free energy with ligand reorganization free energy upon binding based on
the MM-GBSA method. Here, ∆G is the calculated binding free energy
based on the protein-ligand complex conformations.

Figure 7. (A) Ligand reorganization free energy upon binding (δ∆Gre) of
the 31 ligands versus their binding affinity. (B) Ligand reorganization
enthalpy (δ∆H) loss versus entropy gain (δ∆T∆S) upon binding of the 31
compounds. Compounds enclosed by squares are more potent than the AVPI
peptide.
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reorganization accounts for, at most, 9% of the total T∆S (cf.
Supporting Information, Tables S3 and S4).

To quantify the ligand conformational changes between
protein-bound and protein-free states, we use the radius of
gyration, commonly used in protein folding studies, as an
indicator. The average radius of gyration (Rg) of the ligands in
protein-bound and protein-free states is found to be 4.68 and
4.22 Å, respectively (Table S5, Supporting Information),
indicating that there is a 10% extension of the ligand geometry
upon binding. The data are consistent with the structural
information that these ligands adopt an extended conformation
when bound to the protein, similar to the �-turn conformation
of the Smac AVPI peptide that is observed in the crystal
structure. In solution, they form more compact conformations,
corresponding to the hydrophobic collapse of the side chains
of A1, P3, and I4. Such conformational changes allow ligands
to maximize hydrophobic contact with the protein and minimize
their hydrophobic surface in solution.

Leave-One-Out Cross-Validation. We next performed the
leave-one-out cross-validation to further examine the improve-
ment in binding affinity prediction by inclusion of the ligand
reorganization free energy in the MM-GBSA calculation. The
results are provided in Table 2.

Without the ligand reorganization free-energy term (∆G only),
the cross-validated r 2 is 0.36 ( 0.02 in the leave-one-out
analysis. In comparison, inclusion of δ∆Gre in the leave-one-
out analysis improves the cross-validated r 2 value to 0.65 (
0.02. Importantly, the average unsigned error was reduced to

1.03 kcal/mol from 1.78 kcal/mol by inclusion of the ligand
reorganization free-energy term in the cross-validation analysis.

Prediction of the Binding Affinities of Ten Smac Mimetics.
We next assessed the true predictive power of the MM-GBSA
calculation with or without the ligand reorganization free energy
for compounds not included in the correlation analysis.

The regression calculation in Figure 6C gives a relation
between calculated binding free energy (∆G + δ∆Gre) and
experimental Ki value [RT ln(Ki)] in eq 3:

where the number in parentheses is the fitting error of each
parameter27 and the standard deviation of the fit is 1.61 kcal/mol.

When only ∆G is used, eq 4 was obtained:

Equations 3 and 4 were then used to predict the binding
affinities of 10 Smac mimetics (compounds 32-41 in Figure
8), which were reported by scientists from Genentech.10,11 The
crystal structures of compounds 32, 36, and37 with the XIAP-
ML-IAP chimera have been determined (PDB entries, 2I3I,
3F7H, and 3F7I).10,11 Since the binding sites between XIAP-
ML-IAP chimera and XIAP BIR3 are similar, these crystal
structures can be used to validate our predicted binding poses
for compounds 32-41 to XIAP BIR3. The docked pose and

Table 2. Leave-One-Out Correlation and Prediction of the 31 Compounds between the Experimental Ki Values and Binding Affinity
Calculations from the MM-GBSA Method (∆G) and MM-GBSA-Ligand Reorganization Free Energy (∆G + δ∆Gre)

leave-one-out leave-one-out

cmpd RT ln(Ki) ∆G r 2 prediction error ∆G + δ∆Gre r 2 prediction error

1 -8.92 -21.36 0.36 -9.56 -0.64 -19.07 0.65 -9.40 -0.48
2 -7.30 -18.12 0.35 -6.91 0.39 -15.30 0.64 -6.65 0.65
3 -6.65 -17.86 0.34 -6.74 -0.09 -13.44 0.63 -5.17 1.48
4 -7.66 -16.73 0.34 -5.64 2.02 -15.10 0.65 -6.48 1.18
5 -7.31 -16.31 0.34 -5.26 2.05 -14.87 0.64 -6.31 1.00
6 -8.04 -21.43 0.37 -9.63 -1.59 -19.82 0.68 -9.96 -1.92
7 -9.08 -21.14 0.36 -9.37 -0.29 -19.57 0.66 -9.76 -0.68
8 -9.20 -19.54 0.36 -8.04 1.16 -17.68 0.66 -8.37 0.83
9 -7.24 -13.03 0.34 -1.91 5.33 -14.88 0.64 -6.32 0.92
10 -9.31 -18.58 0.37 -7.26 2.05 -17.44 0.66 -8.19 1.12
11 -10.40 -18.48 0.40 -7.23 3.17 -20.91 0.64 -10.71 -0.31
12 -10.30 -23.41 0.35 -11.25 -0.95 -22.29 0.65 -11.80 -1.50
13 -8.08 -16.40 0.35 -5.36 2.72 -16.10 0.65 -7.23 0.85
14 -5.69 -15.15 0.30 -4.21 1.48 -13.22 0.60 -5.11 0.58
15 -9.68 -20.90 0.36 -9.15 0.53 -20.86 0.65 -10.71 -1.03
16 -7.34 -20.84 0.38 -9.17 -1.83 -19.17 0.70 -9.50 -2.16
17 -5.82 -19.83 0.40 -8.47 -2.65 -16.63 0.69 -7.83 -2.01
18 -8.81 -21.08 0.36 -9.33 -0.52 -16.49 0.66 -7.51 1.30
19 -9.31 -22.47 0.36 -10.47 -1.16 -19.31 0.65 -9.56 -0.25
20 -10.35 -22.71 0.35 -10.64 -0.29 -22.11 0.64 -11.66 -1.31
21 -10.50 -18.32 0.41 -7.12 3.38 -18.38 0.68 -8.84 1.66
22 -11.47 -22.62 0.36 -10.46 1.01 -19.13 0.70 -9.32 2.15
23 -9.79 -25.28 0.36 -12.93 -3.14 -20.04 0.65 -10.09 -0.30
24 -9.11 -21.54 0.36 -9.70 -0.59 -18.07 0.66 -8.66 0.45
25 -10.72 -21.36 0.37 -9.48 1.24 -19.59 0.66 -9.70 1.02
26 -11.28 -22.11 0.36 -10.05 1.23 -23.03 0.62 -12.35 -1.07
27 -11.02 -25.71 0.32 -13.39 -2.37 -23.78 0.63 -13.02 -2.00
28 -10.26 -27.10 0.35 -14.72 -4.46 -19.81 0.65 -9.89 0.37
29 -8.41 -25.10 0.41 -12.56 -4.15 -17.25 0.65 -8.08 0.33
30 -9.20 -22.49 0.36 -10.49 -1.29 -19.15 0.65 -9.45 -0.25
31 -8.51 -21.66 0.37 -9.81 -1.30 -18.73 0.66 -9.16 -0.65

mean ( SD 0.36 ( 0.02 0.65 ( 0.02
average unsigned error (kcal/mol) 1.78 1.03

∆G + δ∆Gre ) -5.86345(1.72304) +
1.40719(0.19027)*RT ln(Ki) (3)

∆G ) -9.4772(2.79871) +
1.24609(0.30906)*RT ln(Ki) (4)
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the final snapshots of the 1 ns MD simulations of compounds
32-41 are depicted in Figure 9, which show that there are
substantial changes of the initial docked poses for these
compounds upon MD simulations.

The predictions using eqs 3 and 4 for compounds 32-41 are
provided in Table 3 and Figure 10. Using only ∆G (eq 4), the
average unassigned error of the predicted binding affinities for
compounds 32-41 from the experimentally determined values
is 3.26 kcal/mol. In comparison, using ∆G + δ∆Gre (eq 3), the
average unassigned error of the predicted binding affinities for
compounds 32-41 from the experimentally determined values
is 1.11 kcal/mol. As can be seen from Figure 10, the predicted
values for compounds 32-41 (depicted in red circles) all fall
within the error ranges observed for compounds 1-31 (depicted
in gray dots). The predicted r2 value was improved from 0.13
for compounds 32-41 when eq 4 was used, to 0.45 when eq 3
was used. The predicted r2 value of 0.45 for compounds 32-41,
lower than the cross-validated r 2 value of 0.65 for compounds
1-31, may be attributed, at least in part, to the fact that the
binding affinity difference between compounds 32-41 is only
30 times. These data strongly suggest that inclusion of the ligand
reorganization free energy in the MM-GBSA calculation not
only significantly improves the correlation between the calcu-
lated values and the experimentally determined binding affinities

for compounds in the training set but also greatly enhances the
prediction of the binding affinities for new compounds.

Summary

Despite significant progress, accurate prediction of the binding
affinities (binding free-energies) of protein-ligand interaction
remains a very challenging task. Poor prediction for protein-
ligand affinities may arise from incorrectly predicted binding
models, lack of consistent binding data obtained using different
assay methods and conditions, and defects in computational

Figure 8. Chemical structures of new Smac mimetics used in the validation and their binding affinities with XIAP BIR3 obtained from references 10, 11.

Table 3. Cross-Validation Using 10 Compounds from Genentecha

cmpd RT * ln(Ki) ∆G predicton error ∆G + δ∆Gre prediction error

32 -8.34 -20.84 -9.12 -0.78 -19.14 -9.44 -1.10
33 -7.68 -22.31 -10.3 -2.62 -17.40 -8.20 -0.52
34 -8.96 -16.97 -6.01 2.95 -18.29 -8.83 0.13
35 -7.54 -23.05 -10.89 -3.35 -14.08 -5.84 1.70
36 -8.52 -20.24 -8.64 -0.12 -15.21 -6.64 1.88
37 -9.35 -24.5 -12.06 -2.71 -17.22 -8.07 1.28
38 -9.49 -28.16 -14.99 -5.50 -21.13 -10.85 -1.36
39 -8.08 -25.44 -12.81 -4.73 -17.80 -8.48 -0.40
40 -9.11 -26.28 -13.49 -4.38 -20.32 -10.27 -1.16
41 -9.17 -27.75 -14.67 -5.5 -20.92 -10.7 -1.53

average unsigned error 3.26 1.11

a All units are in kcal/mol.
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methods for calculating the binding affinity of a protein-ligand
complex. In this study, we have performed computational studies
to investigate the strengths and weaknesses of current compu-
tational methods for the prediction of binding models, as well
as binding affinities. We have chosen the XIAP protein and its
ligands (which are also called Smac mimetics) as our model
system due to the following reasons: (1) the availability of a
number of high-resolution crystal structures for this system; (2)
the availability of a relatively large number of designed ligands
for XIAP, both peptides and nonpeptidic in nature; (3) the
availability of consistent experimental binding affinity data
obtained using the same method and under the same assay
conditions; and (4)the important role of this system in regulation
of apoptosis.

Our studies showed that computational docking was able to
reliably predict the binding models of these Smac mimetics to
XIAP, as confirmed by crystal structures for some of these
compounds. However, all of the four computational methods
tested (X-Score, Drugscore, M-Score, and MM-GBSA) yield
poor to modest correlations between computational scores and
experimentally determined binding affinities. Inclusion of the
ensemble conformations for the protein-ligand complex struc-
tures failed to yield a significant improvement. A major
improvement to the correlation by the MM-GBSA method was
found when the ligand reorganization free energy change
between protein-free and protein-bound states was included in
the calculation, which improved the correlation r 2 value from
0.36 to 0.66, and the unassigned error from 2.6 to 1.6 kcal/
mol. Our leave-one-out cross-validation analysis further showed
that inclusion of the ligand reorganization free energy change

(27) The correlation calculation and the parameters are obtained by using
Origin 6.0 from OriginLab. Origin 6.0: Scientific Data Analysis and
Graphing Software; OriginLab: Northampton, and Wellesley Hills,
MA.

(28) Park, C.-M.; Sun, C.; Olejniczak, E. T.; Wilson, A. E.; Meadows,
R. P.; Betz, S. F.; Elmore, S. W.; Fesik, S. W. Bioorg. Med. Chem.
Lett. 2005, 15, 771–775.

Figure 10. Validation of the MM-GBSA methods with 10 Smac mimetics.
(A) Binding free energy calculated using the MM-GBSA method without
inclusion of the ligand reorganization free energy. (B) Binding free energy
calculated using the MM-GBSA method with inclusion of the ligand
reorganization free energy. The red circles are for compounds 32-41,
whereas the gray circles are for compounds 1-31, used as references.

Figure 9. Predicted binding models for 10 new Smac mimetics used in the validation. (A-J) Initial docking poses (yellow) and the final snapshot (blue)
of structures from the 1 ns simulations. The surface representation is the XIAP BIR3 structure used in docking simulations.
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in the MM-GBSA calculation indeed significantly improved the
prediction accuracy. Importantly, when tested for 10 new
compounds reported by scientists from Genentech, significant
improvement in binding affinity prediction accuracy was also
observed with the inclusion of the ligand reorganization free
energy change.

The majority of the current computational methods for
binding affinity prediction include terms accounting for the
interaction energy between protein and ligand and desolvation
effect for both ligand and protein. However, the importance
of the ligand reorganization free energy between protein-
free and protein-bound states, as well as that of the protein
reorganization free energy between ligand-free and ligand-
bound states, for the overall binding free-energy between
protein and ligand is not known. This is in part due to the
experimental difficulty in obtaining the ensemble conforma-
tions for both ligand and protein in two different states.30,31

Using computational methods, our present study clearly
shows that the ligand reorganization free energy change
between protein-free and protein-bound states can play a very
important role in the binding affinity between small-molecule
inhibitors and their targets. This term should be evaluated
in the binding affinity prediction for other protein-ligand
systems and in the development of a new generation of
scoring functions with improved accuracy. To our knowledge,
this is the first computational study which examines the
importance of the ligand reorganization free energy between
protein-free and protein-bound states for the prediction of
protein-ligand binding free energy.

In our present study, we have found that the XIAP protein
experiences very limited conformational changes when

binding to different ligands. Furthermore, the small-molecule
inhibitors of XIAP in our study were all designed to mimic
the Smac AVPI peptide and have very similar interactions
with the protein, both in our predicted models and in the
crystal structures. Therefore, we made an assumption that
the XIAP protein reorganization free energy changes between
ligand-free and ligand-bound states for these ligands are
similar. This assumption may not be valid in cases in which
a protein adopts very different conformations as it binds to
different ligands and/or ligands vary significantly in their
binding modes. In such cases, both the ligand and protein
reorganization free energy terms may have to be included in
order to significantly improve binding affinity prediction
between proteins and ligands. We are currently investigating
the importance of the protein reorganization free energy term
in binding affinity prediction, and the results will be reported
in due course.
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